Nothing But the Truth: Honesty and Deception in a Complex World
By Chris Wood, vice president, Santa Fe Institute

Can we justify being less than fully truthful to a spouse, child or aging parent to avoid causing them pain? Even this seemingly simple question demonstrates that intentions and motives add immense complexity and depth to the roles honesty and deception play in human interactions. Attempting to understand phenomena such as honesty and deception in their broadest social, biological and physical science contexts is a central research strategy of Cormac McCarthy and his colleagues at the Santa Fe Institute.

"You dont believe me.
I believe you.
I always believe you.
I dont think so.
Yes I do. I have to
" (p. 156).

That interchange between father and son in The Road exemplifies the patchwork of truths, part-truths,"white lies" and deliberate deception that permeates our interactions with each other. The moral and ethical values many societies place on telling the truth may compete with other important motives. Differences among cultures in those roles complicate the picture even further. The oath our judicial system requires of witnesses—"to tell the truth, the whole truth, and nothing but the truth"—acknowledges that truth and falsehood are not a simple binary distinction and emphasizes there are numerous ways, in addition to outright lies, we can cheat the truth.

While we usually think of honesty and deception in the context of human communication, it has long been known that animals use elaborate means of deception. Some nonpoisonous butterflies, for example, have evolved wing patterns similar to those of poisonous species as a means of deceiving and avoiding predators. Animal communication was initially thought to have evolved as a means of facilitating social interactions by the interchange of reliable information. In the competitive world of natural selection, however, deceptive communication becomes as important as reliable communication in achieving competitive advantage. If senders could benefit by deceiving receivers, then the frequency of deception would increase. Receivers would, in turn, evolve means of disregarding deceptive signals, creating what John Maynard Smith has called an "arms race" in which honest and deceptive strategies are "at war" to enable greater fitness. A branch of mathematics known as game theory, originally developed in economics, has become widely used in evolutionary biology for understanding interactions among such competing strategies.

The complex interplay of honesty and deception in the evolutionary context becomes dramatically richer and more nuanced when we consider the intentions of human senders and receivers. (The nature and extent of intentions and other mental states in nonhumans is an important focus of current philosophical and scientific inquiry.) Scientists and philosophers have suggested that the selective advantage of the ability to evaluate the mental states and intentions of others may be one of the important forces driving brain evolution in higher primates and humans. The concept "theory of mind" is now widely used to refer to this ability to attribute mental states (such as beliefs, desires and intentions) to others. Perhaps it should come as no surprise that the size of our neocortex (the region of the brain that has enlarged most extensively in humans compared to other primates) has been reported to correlate with the rate of deception in primate species.

About the Author
Chris Wood became vice president of the Santa Fe Institute in 2005, following faculty positions at Yale University (1976–1989) and as group leader of the Biophysics Group at Los Alamos National Laboratory (1989–2005). From 2000 to 2001, he was interim director of the National Foundation for Functional Brain Imaging, a collaboration involving Harvard Medical School/Massachusetts General Hospital, University of Minnesota and the Minneapolis VA Medical Center, and a number of academic, private and government research institutions in New Mexico. The mission of the foundation was the development and application of advanced brain imaging techniques to mental disorders. Chris is a neuroscientist, whose research interests include imaging and modeling the brain, computational neuroscience and neural computation.

Conflict, negotiation and other themes from The Road


Next Story