For Mogil, the best hope lies in genetic research. "We know of a lot more molecules, a lot more genes and proteins that are involved in pain than we did ten years ago," he says. That means there are more targets to aim new drugs at. "The analogy I like to use is, drug development is still a crapshoot. You're throwing balls against the wall and hoping they stick. But the more balls you have to throw, the higher the probability that a few of them are going to stick. I'm optimistic that the problem of pain is on its way to being solved."

Mogil never tires of throwing balls of his own, exploring social and environmental factors in pain. It's already clear that emotions can make a difference; fearing that something is going to hurt, for example, increases the pain, while positive expectations lessen it. And subjects tend to rate their pain lower when they're distracted than when they're focusing on how much it aches or stings.

In the summer of 2006, Mogil created a new sensation with his finding that empathy amps up pain sensitivity in mice, whose genetic makeup is similar to that of humans. "It's well known to experts who study pain in people that social factors, such as how the spouse reacts to the patient's complaints, are huge in explaining how well chronic pain patients do," says Mogil. "If the spouse is solicitous and says, 'Oh, Harry, let me go get you some water, you poor baby,' this makes Harry's chronic pain worse. And if the spouse says, 'Oh, come on, Harry, suck it up,' it makes Harry's pain better." What Mogil discovered by watching mice was that seeing another creature in distress can actually be painful: A mouse in mild discomfort (the equivalent of a slight stomachache, which researchers induce in the laboratory) will feel worse if it sees another mouse suffering—though, interestingly, only if they have shared a cage (a stranger's distress has no such effect). Mogil is now trying to isolate genes and proteins that define the neural circuit responsible for empathy.

With minds like Mogil's at work on pain relief, breakthroughs are bound to happen—provided that researchers get the support they need. "We've got all this knowledge," he says, "but so far not much has translated over to the bedside." He hopes that increased awareness of the problem will attract more research dollars: an uphill battle, since in recent years federal funding has been on a downslide, according to the NIH, leaving private donors to pick up the slack. "Other diseases have people doing bike-a-thons and having bake sales," he says. "Pain has nothing like that."

He tells me about an elderly woman who hasn't left her house in three years because she can't bear to put on clothes. "She has what's known as mechanical allodynia, where the slightest touch is perceived as excruciating pain. So she walks around naked in her house and can't leave. This doesn't deserve a bike-a-thon?"

It could happen. A number of highly energized organizations are mobilizing patients to fight for recognition of pain as a national health priority, and advocating for those who, like my mother, are desperate for support. Meanwhile, Mogil keeps throwing balls against the wall, using his expertise and intuition to fathom the intricate mechanisms of the human brain, and how they work to process pain. "We have this disadvantage in trying to study the most complicated thing in the universe," he says. "It's like asking a carburetor to understand itself. We're trying to understand the brain, and the only tool we have is a brain." That, and the heart to stick with this urgently needed research, which might one day open the door to a pain-free life.

As a reminder, always consult your doctor for medical advice and treatment before starting any program.


Next Story